题目内容
某舞蹈队10名队员的年龄分布如表所示:
年龄(岁)
13
14
15
16
人数
2
4
3
1
则这10名队员年龄的众数是 .
某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( )
A.最高分 B.中位数 C.极差 D.平均数
在代数式x2____2x____1的空格“____”中,任意填上“+”或“-”,可组成若干个不同的代数式,其中能够构成完全平方式的概率为 .
如图,已知一次函数的图象y=kx+b与反比例函数y=-的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:
(1)一次函数的解析式;
(2)△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.
在平面直角坐标系中,有平行四边形ABCD,点A坐标为(2,0),点C(5,-3),点B(4,1),则D点坐标为 .
在平面直角坐标系中,抛物线y=-(x+1)2-的顶点是( )
A.(-1,-) B.(-1,) C.(1,-) D.(1,)
某房地产开发公司计划建甲、乙两种户型的住房共80套,该公司所用建房资金不少于2850万元,甲种户型每套成本和售价分别为45万元和51万元,乙种户型每套成本和售价分别为30万元和35万元.设计划建甲种户型x套.
(1)该公司最少建甲种户型多少套?
(2)若甲种户型不超过32套,选择哪种建房方案,该公司获利最大?最大利润是多少?
(3)在(2)的条件下,根据国家房地产政策,公司计划每套甲种户型住房的售价降低a万元(0<a≤1.5),乙种户型住房的售价不变,且预计所建的两种住房能全部售出,直接写出该公司获得最大利润的方案.
如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是( )
A.-2 B.±4 C.2 D.±2
|5|+(-)-2+--(-1)0.