题目内容
【题目】(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;
(2)先化简(
-
)÷
,并回答:原代数式的值可以等于-1吗?为什么?
【答案】(1)a2+b2=29, (a-b)2=9;(2)原代数式的值不能等于-1,理由见解析.
【解析】试题分析:(1)根据完全平方公式,即可解答;
(2)原式括号中两项约分后,利用乘法分配律化简,约分后利用同分母分式的减法法则计算得到最简结果,令原式的值为-1,求出x的值,代入原式检验即可得到结果.
试题解析:(1)a2+b2=(a+b)2-2ab=72-2×10=49-20=29, (a-b)2=(a+b)2-4ab=72-4×10=49-40=9.
(2) 原式=
=
=
,
原式的值为-1,即
=-1,
去分母得:a+1=-a+1,
解得:a=0,
代入原式检验,分母为0,不合题意,
则原式的值不可能为-1.
练习册系列答案
相关题目
【题目】在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请估计:当n很大时,摸到白球的频率将会接近 ;(精确到0.1)
(2)试估算口袋中白种颜色的球有多少只?
(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球;这两只球颜色不同的概率是多少?