题目内容
若式子有意义,则x的取值范围是( )
A. x≥-2且x≠1 B. x>-2且x≠1 C. x≥-2 D. x>-2
如图,已知△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABD沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积等于________.
一个正多边形内角和等于540°,则这个正多边形的每一个外角等于( )
A. 72°; B. 60°; C. 108°; D. 90°.
当=-1时,二次根式的值是________.
如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是( )
A. 矩形 B. 菱形 C. 正方形 D. 等腰梯形
已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)求证:AE与⊙O相切;
(2)当BC=4,cosC=时,求⊙O的半径.
在平面直角坐标系中,已知A(3,0),B是以M(3,4)为圆心,1为半径的圆周上的一个动点,连结BO,设BO的中点为C,则线段AC的最小值为________.
如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);
(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).
如图,线段AB,CD相交于点E,AD∥EF∥BC,若AE:EB=1:3,则=( )
A. 2 B. C. D.