题目内容
22.如图,将□A
BCD的边DC延长到点E,使CE=DC,连接AE,
交BC于点F.
⑴求证:△ABF≌△ECF;
⑵若∠AFC=2∠D
,连接AC、BE.求证:四边形ABEC是矩形.
证明:⑴∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.∴∠ABF=∠ECF.
∵EC=DC, ∴AB=EC.
在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴△ABF≌△ECF.
(2)解法一:∵AB=EC ,AB∥EC,
∴四边形ABEC是平行四边形.∴AF=EF, BF=CF.
∵四边形ABCD是平行四边形,∴∠ABC=∠D,
又∵∠AFC=2∠D,∴∠AFC=2∠ABC.
∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.
∴FA=FE=FB=FC, ∴AE=BC.∴□ABEC是矩形.
解法二:∵AB=EC ,AB∥EC,∴四边形ABEC是平行四边形.
∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠BCE.
又∵∠AFC=2∠D,∴∠AFC=2∠BCE,
∵∠AFC=∠FCE+∠FEC,∴∠
FCE=∠FEC.∴∠D=∠FEC.∴AE=AD.
又∵CE=DC,∴AC⊥DE.即∠ACE=90°.
∴□ABEC是矩形.
将6.18×10﹣3化为小数的是( )
|
| A. | 0.000618 | B. | 0.00618 | C. | 0.0618 | D. | 0.618 |