ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¾ØÐÎAOBCµÄ¶¥µãOÔÚ×ø±êԵ㣬±ßOB¡¢OA·Ö±ðÔÚx¡¢yÖáµÄÕý°ëÖáÉÏ£¬ÇÒOA=6¸öµ¥Î»³¤¶È£¬OB=10¸öµ¥Î»³¤¶È£®ÉäÏßy=| 3 | 4 |
£¨1£©Ïß¶ÎAD=
£¨2£©·Ö±ðÇó0¡Üt£¼3¼°7¡Üt£¼10ʱ£¬SÓëtµÄº¯Êý¹ØÏµÊ½£»
£¨3£©Çó¡÷POQµÄÃæ»ýSµÈÓÚÌÝÐÎDCBOÃæ»ýÒ»°ëʱtµÄÖµ£»
£¨4£©ÔÚÔ˶¯µÄÈ«¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚtµÄÖµ£¬Ê¹¡÷POQΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÉèµãDµÄ×ø±êΪ£¨x£¬6£©£¬¡ßµãDÔÚy=
xÉÏ£¬¡àx=8£¬¼´AD=8£¬ÀûÓù´¹É¶¨Àí¿ÉÇóµÃOD=10£®
£¨2£©0¡Üt£¼3ʱ£¬PÔÚAOÉÏ£¬QÔÚOBÉÏ£®´Ëʱ¡÷POQΪֱ½ÇÈý½ÇÐΣ¬Á½Ö±½Ç±ß·Ö±ðΪt£¬2t£»Ò×ÇóµÃÃæ»ý£®7¡Üt£¼10ʱ£¬PÔÚDOÉÏ£¬QÔÚOBÉÏ£¬Ò×ÇóµÃOQΪt•OPµÄ³¤¶È£¬ÀûÓáÏPOM=¡ÏADOµÄÕýÇÐÖµ¼´¿ÉÇóµÃOQ±ßÉϵĸßPM£®
£¨3£©Ò×ÇóµÃÌÝÐÎBCDOµÄÃæ»ýΪ36£®ÄÇôÈá÷POQµÄÃæ»ýµÈÓÚ18£¬Ó¦·ÖPÔÚAOÉÏ£¬QÔÚBOÉÏ£»PÔÚADÉÏ£¬QÔÚOBÉÏ£»PÔÚDOÉÏ£¬QÔÚCBÉÏ£®PÔÚDOÉÏ£¬QÔÚBCÉϵÈÇé¿ö·ÖÎö£®
£¨4£©PÔÚAOÉÏ£¬QÔÚBOÉÏ£¬´ËʱΪֱ½ÇÈý½ÇÐΣ¬Á½Ö±½Ç±ßµÄ±ß³¤²»¿ÉÄÜÏàµÈ£¬²»´æÔÚΪµÈÑüÈý½ÇÐεÄÐÎʽ£®PÔÚADÉÏ£¬QÔÚOBÉÏ£¬PO=PQ£¬´Ëʱ£¬APµÄ³¤¶ÈµÈÓÚOQµÄÒ»°ë£®PQ=OQ£¬¿ÉµÃµ½tµÄÁíÒ»Öµ£®PÔÚDOÉÏ£¬QÔÚCBÉÏ¿ÉÀûÓÃPO=OQµÃµ½tµÄÖµ£¬PQ=OP£®´ËʱOM=MQ£®PÔÚDOÉÏ£¬QÔÚBCÉÏ¡÷POQÊǶ۽ÇÈý½ÇÐΣ¬²»´æÔÚµÈÑüÈý½ÇÐεÄÇé¿ö£®
| 3 |
| 4 |
£¨2£©0¡Üt£¼3ʱ£¬PÔÚAOÉÏ£¬QÔÚOBÉÏ£®´Ëʱ¡÷POQΪֱ½ÇÈý½ÇÐΣ¬Á½Ö±½Ç±ß·Ö±ðΪt£¬2t£»Ò×ÇóµÃÃæ»ý£®7¡Üt£¼10ʱ£¬PÔÚDOÉÏ£¬QÔÚOBÉÏ£¬Ò×ÇóµÃOQΪt•OPµÄ³¤¶È£¬ÀûÓáÏPOM=¡ÏADOµÄÕýÇÐÖµ¼´¿ÉÇóµÃOQ±ßÉϵĸßPM£®
£¨3£©Ò×ÇóµÃÌÝÐÎBCDOµÄÃæ»ýΪ36£®ÄÇôÈá÷POQµÄÃæ»ýµÈÓÚ18£¬Ó¦·ÖPÔÚAOÉÏ£¬QÔÚBOÉÏ£»PÔÚADÉÏ£¬QÔÚOBÉÏ£»PÔÚDOÉÏ£¬QÔÚCBÉÏ£®PÔÚDOÉÏ£¬QÔÚBCÉϵÈÇé¿ö·ÖÎö£®
£¨4£©PÔÚAOÉÏ£¬QÔÚBOÉÏ£¬´ËʱΪֱ½ÇÈý½ÇÐΣ¬Á½Ö±½Ç±ßµÄ±ß³¤²»¿ÉÄÜÏàµÈ£¬²»´æÔÚΪµÈÑüÈý½ÇÐεÄÐÎʽ£®PÔÚADÉÏ£¬QÔÚOBÉÏ£¬PO=PQ£¬´Ëʱ£¬APµÄ³¤¶ÈµÈÓÚOQµÄÒ»°ë£®PQ=OQ£¬¿ÉµÃµ½tµÄÁíÒ»Öµ£®PÔÚDOÉÏ£¬QÔÚCBÉÏ¿ÉÀûÓÃPO=OQµÃµ½tµÄÖµ£¬PQ=OP£®´ËʱOM=MQ£®PÔÚDOÉÏ£¬QÔÚBCÉÏ¡÷POQÊǶ۽ÇÈý½ÇÐΣ¬²»´æÔÚµÈÑüÈý½ÇÐεÄÇé¿ö£®
½â´ð£º½â£º£¨1£©AD=8£¬OD=10£¨2·Ö£©
£¨2£©µ±0¡Üt£¼3ʱ£¬S=t2£»£¨4·Ö£©
µ±7¡Üt£¼10ʱ£¬PO=24-2t£¬
PM=
£¨24-2t£©£¬
S=-
t2+
t
=-
(t-6)2+
£¨6·Ö£©


£¨3£©µ±3¡Üt£¼7ʱ£¬S=3t£»
µ±10¡Üt¡Ü12ʱ£¬PQ=24-2t£¬CD=2£¬CE=
£¬BE=
£¬
BQ=t-10£¬EQ=
-t£¬NQ=
£¨
-t£©£¬
S=
£¨12-t£©£¨35-2t£©
=
t2-
t+168
=
(t-
)2-
3t=18£¬t=6£¬
-
t2+
t=18£¬t=6+
£¬t=6-
£¼7£¨Éᣩ£®£¨8·Ö£©
£¨4£©PO=PQ£¬2t-6=
£¬
t=4
PQ2=t2-12t+72£¬PQ2=OQ2£¬t=6
PO=24-2t£¬PO=OQ£¬t=8
OM=
£¬
£¨24-2t£©=
£¬
t=
£®£¨10·Ö£©
Áí£º


£¨2£©µ±0¡Üt£¼3ʱ£¬S=t2£»£¨4·Ö£©
µ±7¡Üt£¼10ʱ£¬PO=24-2t£¬
PM=
| 3 |
| 5 |
S=-
| 3 |
| 5 |
| 36 |
| 5 |
=-
| 3 |
| 5 |
| 108 |
| 5 |
£¨3£©µ±3¡Üt£¼7ʱ£¬S=3t£»
µ±10¡Üt¡Ü12ʱ£¬PQ=24-2t£¬CD=2£¬CE=
| 3 |
| 2 |
| 15 |
| 2 |
BQ=t-10£¬EQ=
| 35 |
| 2 |
| 4 |
| 5 |
| 35 |
| 2 |
S=
| 2 |
| 5 |
=
| 4 |
| 5 |
| 118 |
| 5 |
=
| 4 |
| 5 |
| 59 |
| 4 |
| 121 |
| 20 |
3t=18£¬t=6£¬
-
| 3 |
| 5 |
| 36 |
| 5 |
| 6 |
| 6 |
£¨4£©PO=PQ£¬2t-6=
| t |
| 2 |
t=4
PQ2=t2-12t+72£¬PQ2=OQ2£¬t=6
PO=24-2t£¬PO=OQ£¬t=8
OM=
| t |
| 2 |
| 4 |
| 5 |
| t |
| 2 |
t=
| 64 |
| 7 |
Áí£º
µãÆÀ£º±¾Ì⿼²éÔ˶¯¹ý³ÌÖÐÐγÉÒ»¶¨µÄÃæ»ýºÍÒ»¶¨µÄÐÎ×´£¬×¢Òâ·Ö¶àÖÖÇé¿ö½øÐзÖÎö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿