题目内容

(2009•同安区质检)如图,直线AB过点A(m,0)、B(0,n)(其中m>0,n>0).反比例函数y=
mx
的图象与直线AB交于C、D两点,连接OC、OD.
(1)已知m+n=10,△AOB的面积为S,问:当n何值时,S取最大值?并求这个最大值.
(2)当△AOC、△COD、△DOB的面积都相等时,求n的值.
分析:(1)根据题意,得:OA=m,OB=n,又由m+n=10,得m=10-n,进而可得S关于m、n的关系式,结合二次函数的性质计算可得答案;
(2)设直线AB的解析式为y=kx+b,根据题意,可得关于k、b的关系式,过点D、C分别作x轴的垂线,垂足分别点E、F,由△AOC、△COD、△DOB的面积都相等,可得关系式,解可得答案.
解答:解:(1)根据题意,得:OA=m,OB=n,
所以S=
1
2
mn,
又由m+n=10,得m=10-n,
得:S=
1
2
n(10-n)=-
1
2
n2+5n,
=-
1
2
(n-5)2+
25
2

∵-
1
2
<0

∴当n=5时,S取最大值
25
2
.  

(2)设直线AB的解析式为y=kx+b,
根据题意,得:
mk+b=0
b=n

解得:k=-
n
m
,b=n,
所以直线AB的函数关系式为y=-
n
m
x+n
.       
过点D、C分别作x轴的垂线,垂足分别点E、F,
当△AOC、△COD、△DOB的面积都相等时,
有S△AOC=
1
3
S△AOB,即
1
2
OA×CF=
1
3
×
1
2
OA×OB,
所以CF=
1
3
OB=
1
3
n.                           
即C点的纵坐标为
1
3
n.
y=
1
3
n代入y=
m
x
,得x=
3m
n
.              
x=
3m
n
y=
1
3
n代入直线的函数关系式y=-
n
m
x+n

1
3
n=-3+n,
所以n=
9
2
点评:本题考查了反比例函数的图象的性质以及其与直线的关系,利用形数结合解决此类问题,是非常有效的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网