题目内容
关于x的方程x2+2(k+1)x+k-2=0
(1)试说明:不论k取何值时,方程总有实数根;
(2)若方程有一根为x=1,求k的值并求出方程的另一根.
(1)试说明:不论k取何值时,方程总有实数根;
(2)若方程有一根为x=1,求k的值并求出方程的另一根.
分析:(1)将根的判别式进行配方,得到非负数即可进行判断;
(2)将x=1代入x2+2(k+1)x+k-2=0得到k的值,然后根据根与系数的关系求出另一根.
(2)将x=1代入x2+2(k+1)x+k-2=0得到k的值,然后根据根与系数的关系求出另一根.
解答:(1)证明:∵△=[2(k+1)]2-4(k-2)
=4k2+8k+2-4k+8
=4k2+4k+10
=4(k2+k)+10
=4(k2+k+
-
)+10
=4(k+
)2-1+10
=4(k+
)2+9>0,
∴不论k取何值时,方程总有实数根;
(2)解:将x=1代入x2+2(k+1)x+k-2=0得,
1+2(k+1)+k-2=0,
解得,k=-
,
则k-2=-
-2=-
;
∴x•1=-
,
解得k=-
,
故k=-
,另一个根为x=-
.
=4k2+8k+2-4k+8
=4k2+4k+10
=4(k2+k)+10
=4(k2+k+
| 1 |
| 4 |
| 1 |
| 4 |
=4(k+
| 1 |
| 2 |
=4(k+
| 1 |
| 2 |
∴不论k取何值时,方程总有实数根;
(2)解:将x=1代入x2+2(k+1)x+k-2=0得,
1+2(k+1)+k-2=0,
解得,k=-
| 1 |
| 3 |
则k-2=-
| 1 |
| 3 |
| 7 |
| 3 |
∴x•1=-
| 7 |
| 3 |
解得k=-
| 7 |
| 3 |
故k=-
| 1 |
| 3 |
| 7 |
| 3 |
点评:本题考查了根与系数的关系及根的判别式,一定要熟悉配方法.
练习册系列答案
相关题目