题目内容
如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.
(1)求证:BE=DF;
(2)求证:AF∥CE.
已知有理数a,b满足ab<0,|a|>|b|,2(a+b)=|b-a|,则的值为_______.
观察下列图形,是中心对称图形的是( )
下列命题:①关于某条直线成轴对称的两个图形是全等图形;
②有一个外角为60°的等腰三角形是等边三角形;
③关于某直线对称的两条线段平行;
④正五边形有五条对称轴;
⑤在直角三角形中,30°角所对的边等于斜边的一半. 其中正确的有( )个.
A.1个 B.2个 C.3个 D.4个
点M(1,2)关于x轴对称的点的坐标为( )
A.(—1,2) B.(-1,-2) C.(1,-2) D.(2,-1)
如图,ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为 ________.
若关于的分式方程 -1=无解,则的值为( )
A.-1.5 B.1 C.-1.5或 2 D.-0.5或-1.5
市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
如图一条抛物线(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)“抛物线三角形”一定是_______________三角形;
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.