题目内容
如图,在矩形ABCD中,AB=2,AD=3,点P是BC上与B、C不重合的任意一点,设PA=x,点D到AP的距离为y,求y与x的函数表达式.

∵四边形ABCD是矩形,
∴AD∥BC,∠B=90°,
∴∠DAE=∠APB,
∵DE⊥AP,∴∠AED=90°,
∴∠B=∠AED=90°,
∴△ABP∽△DEA;
∴
=
;
∴
=
;
∴y=
.
∴AD∥BC,∠B=90°,
∴∠DAE=∠APB,
∵DE⊥AP,∴∠AED=90°,
∴∠B=∠AED=90°,
∴△ABP∽△DEA;
∴
| AB |
| DE |
| AP |
| DA |
∴
| 2 |
| y |
| x |
| 3 |
∴y=
| 6 |
| x |
练习册系列答案
相关题目