题目内容

在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于(  )
A、12B、14C、16D、18
分析:连接ED,根据BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,先求出S四边形BCDE=
1
2
BD•CE=12.然后利用DE是△ABC两边中点连线即可求得答案.
解答:解:如图,连接ED,
精英家教网
则S四边形BCDE=
1
2
DB•EH+
1
2
BD•CH=
1
2
DB(EH+CH)=
1
2
BD•CE=12.
又∵CE是△ABC中线,
∴S△ACE=S△BCE
∵D为AC中点,
∴S△ADE=S△EDC
∴S△ABC=
4
3
S四边形BCDE=
4
3
×12=16.
故选C.
点评:此题考查学生对三角形面积的理解和掌握,解答此题的关键是连接ED,求出S四边形BCDE
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网