题目内容


如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.

(1)求k的值;

(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.

 


【考点】反比例函数综合题.

【分析】(1)首先根据题意求出C点的坐标,然后根据中点坐标公式求出D点坐标,由反比例函数(x>0,k≠0)的图象经过线段BC的中点D,D点坐标代入解析式求出k即可;

(2)分两步进行解答,①当P在直线BC的上方时,即0<x<1,如图1,根据S四边形CQPR=CQ•PD列出S关于x的解析式,②当P在直线BC的下方时,即x>1,如图2,依然根据S四边形CQPR=CQ•PG列出S关于x的解析式.

【解答】解:(1)∵正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),

∴C(0,2),

∵D是BC的中点,

∴D(1,2),

∵反比例函数(x>0,k≠0)的图象经过点D,

∴k=2;

 

(2)当P在直线BC的上方时,即0<x<1,

如图1,∵点P(x,y)在该反比例函数的图象上运动,

∴y=

∴S四边形CQPR=CQ•PQ=x•(﹣2)=2﹣2x(0<x<1),

 

当P在直线BC的下方时,即x>1如图2,同理求出S四边形CQPR=CQ•CR=x•(2﹣)=2x﹣2(x>1),

综上S=

【点评】本题主要考查反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质,解答(2)问的函数解析式需要分段求,此题难度不大.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网