题目内容

如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则


  1. A.
    ∠1=∠EFD
  2. B.
    BE=EC
  3. C.
    BF=DF=CD
  4. D.
    FD∥BC
D
分析:根据题中的条件可证明出△ADF≌△ABF,由全等三角形的性质可的∠ADF=∠ABF,再由条件证明出∠ABF=∠C,由角的传递性可得∠ADF=∠C,根据平行线的判定定理可证出FD∥BC.
解答:在△AFD和△AFB中,
∵AF=AF,∠1=∠2,AD=AB,
∴△ADF≌△ABF,
∴∠ADF=∠ABF.
∵AB⊥BC,BE⊥AC,
即:∠BAC+∠C=∠BAC+∠ABF=90°,
∴∠ABF=∠C,
即:∠ADF=∠ABF=∠C,
∴FD∥BC,
故选D.
点评:本题主要考查全等三角形的性质,涉及到的知识点还有平行线的判定定理,关键在于运用全等三角形的性质证明出角与角之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网