题目内容
| 3 |
6-3
| 3 |
6-3
平方单位.| 3 |
分析:连接AC′,延长CD交AC′于点E,作EF⊥C′B′,连接AG,由正方形的性质就可以得出△GB′A≌△GDA,△GDA≌△EDA,就可以得出GB′=GD=DE=EF,设GB′=GD=DE=EF=x建立方程求出x的值就可以求出结论.
解答:解:连接AC′,延长CD交AC′于点E,作EF⊥C′B′,连接AG,
∴∠EFG=∠EFC′=90°.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠CDA=90°.∠AC′B′=45°.
∵∠DAD′=60°,
∴∠B′AG=30°,
∴∠DAE=15°.
∵正方形ABCD绕点A逆时针方向旋转60°后得到正方形AB′C′D′,
∴正方形ABCD≌AB′C′D′,
∴AD=AB′=C′B′,∠CB′A=∠CDA=90°.
在Rt△GB′A和Rt△GDA中
,
∴Rt△GB′A≌Rt△GDA(HL),
∴∠GAB′=∠GAD.GB′=GD.
∵∠GAB′+∠GAD=30°,
∴∠GAB′=∠GAD=15°,
∴∠GAD=∠DAE.
在△GDA和△EDA中
,
∴△GDA≌△EDA(ASA),
∴GD=DE.
∵∠EFC′=90°,.∠AC′B′=45°,∠FGD=30°
∴∠FEC′=45°,GE=2EF.
∴∠FEC′=,.∠EC′F,
∴C′F=EF.
设GB′=GD=DE=EF=x,在Rt△EFG中,与偶勾股定理,得
FG=
x,
∴x+
x+x=
,
解得:x=2
-3,
∴S△ADG=
=
,
∴阴影部分的面积为:
×2=6-3
.
故答案为:6-3
.
∴∠EFG=∠EFC′=90°.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠CDA=90°.∠AC′B′=45°.
∵∠DAD′=60°,
∴∠B′AG=30°,
∴∠DAE=15°.
∵正方形ABCD绕点A逆时针方向旋转60°后得到正方形AB′C′D′,
∴正方形ABCD≌AB′C′D′,
∴AD=AB′=C′B′,∠CB′A=∠CDA=90°.
在Rt△GB′A和Rt△GDA中
|
∴Rt△GB′A≌Rt△GDA(HL),
∴∠GAB′=∠GAD.GB′=GD.
∵∠GAB′+∠GAD=30°,
∴∠GAB′=∠GAD=15°,
∴∠GAD=∠DAE.
在△GDA和△EDA中
|
∴△GDA≌△EDA(ASA),
∴GD=DE.
∵∠EFC′=90°,.∠AC′B′=45°,∠FGD=30°
∴∠FEC′=45°,GE=2EF.
∴∠FEC′=,.∠EC′F,
∴C′F=EF.
设GB′=GD=DE=EF=x,在Rt△EFG中,与偶勾股定理,得
FG=
| 3 |
∴x+
| 3 |
| 3 |
解得:x=2
| 3 |
∴S△ADG=
| ||||
| 2 |
6-3
| ||
| 2 |
∴阴影部分的面积为:
6-3
| ||
| 2 |
| 3 |
故答案为:6-3
| 3 |
点评:本题考查了旋转的性质的运用,正方形的性质的运用,勾股定理的运用,全等三角形的判定与性质的运用,一元一次方程的运用,解答时灵活运用正方形的性质求解是关键.
练习册系列答案
相关题目
如图,将边长为a的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动,当A1第一次滚动到图2位置时,顶点A1所经过的路径的长为( )

A、
| ||||
B、
| ||||
C、
| ||||
D、
|