题目内容
【题目】如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.
![]()
(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;
(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为 ;
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为 ;
(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为
【答案】(1)作图见解析; (2)(5,0);(3)
;(4)![]()
【解析】试题分析:(1)线段AB绕点A按逆时针方向旋转90°得到线段AC.线段AC及点B经过的路径是一段弧,根据弧长公式计算路径;
(2)根据点A的坐标为(1,3),点B的坐标为(-2,-1),可建立直角坐标系,从直角坐标系中读出点C的坐标为(5,0);
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为一个扇形,根据扇形公式计算;
(4)将它围成一个几何体即圆锥的侧面,则该几何体底面圆的周长就等于弧长,利用此等量关键可计算出半径.
试题解析:(1)如图,
![]()
为点B经过的路径;
(2)(5,0);
(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为一个扇形,
根据扇形公式计算: ![]()
(4)将它围成一个几何体即圆锥的侧面,则该几何体底面圆的周长就等于弧长,
![]()
解得r=
.
练习册系列答案
相关题目