题目内容
(1)已知:点(x,y)在直线y=-x+1上,且x2+y2=2,求x7+y7的值.(2)计算:
| ||||||||
(
|
| ||||||||
(
|
| ||||||||
(
|
(3)已知a、b、c是直角三角形△ABC的角A、B、C所对的边,∠C=90°.求:
| 1 |
| a+b+c |
| 1 |
| b+c-a |
| 1 |
| c+a-b |
| 1 |
| c-a-b |
分析:(1)根据点(x,y)在直线y=-x+1上,得出x+y=1,进而求出xy的值,再利用因式分解法求出x7+y7的值;
(2)首先设
=x,
=y,
=z,再替换后整理得出即可;
(3)将原式分组进行计算,再利用三角形三边关系求出即可.
(2)首先设
| 2007 |
| 2008 |
| 2009 |
(3)将原式分组进行计算,再利用三角形三边关系求出即可.
解答:解:(1)∵x2+y2=2?1=(x+y)2=x2+y2+2xy=2+2xy?xy=-
,
∴x3+y3=(x+y)3-3xy(x+y)=1-3×(-
)=
x4+y4=(x2+y2)2-2x2y2=4-2(-
)2=
,
∴x7+y7=(x3+y3)(x4+y4)-x3y3(x+y)=
×
-(-
)3×1=
;
(2)设
=x,
=y,
=z,
则原式=
+
+
=
=0;
(3)原式=(
+
)+(
+
)=
+
=
+
=
+
=0.
| 1 |
| 2 |
∴x3+y3=(x+y)3-3xy(x+y)=1-3×(-
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 7 |
| 2 |
∴x7+y7=(x3+y3)(x4+y4)-x3y3(x+y)=
| 5 |
| 2 |
| 7 |
| 2 |
| 1 |
| 2 |
| 71 |
| 8 |
(2)设
| 2007 |
| 2008 |
| 2009 |
则原式=
| x |
| (x-y)(x-z) |
| y |
| (y-x)(y-z) |
| z |
| (z-x)(z-y) |
=
| x(y-z)-y(x-z)+z(x-y) |
| (x-y)(y-z)(x-z) |
(3)原式=(
| 1 |
| a+b+c |
| 1 |
| c-a-b |
| 1 |
| b+c-a |
| 1 |
| c+a-b |
| 2c |
| c2-(a+b)2 |
| 2c |
| c2-(a-b)2 |
=
| 2c |
| c2-a2-b2-2ab |
| 2c |
| c2-a2-b2+2ab |
=
| c |
| -ab |
| c |
| ab |
=0.
点评:此题主要考查了勾股定理以及一次函数图象上点的特征以及因式分解的应用和换元法解方程等知识,根据已知选择正确的计算方法是解题关键.
练习册系列答案
相关题目