题目内容

已知关于x的方程(k-1)x2-
1+2k
x+
1
4
=0
有实数根,则k的取值范围(  )
A.k≥-2B.k≥-
1
2
C.k>-2且k≠1D.以上都不对
∵1+2k≥0,
∴k≥-
1
2

①当k-1=0,即k=1时,
∵1>-
1
2

∴此时k符合题意;
②当k-1≠0,即k≠1时,关于x的方程(k-1)x2-
1+2k
x+
1
4
=0
是一元二次方程,当它有实数根时,
△=1+2k-4×
1
4
×(k-1)≥0,即2+2k≥0,
解得,k≥-1,
综上所述,k的取值范围是k≥-
1
2

故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网