题目内容
对于一切不小于2的自然数n,关于x的一元二次方程x2-(n+2)x-2n2=0的两个根记作an,bn(n≥2),则| 1 |
| (a2-2)(b2-2) |
| 1 |
| (a3-2)(b3-2) |
| 1 |
| (a2007-2)(b2007-2) |
分析:由根与系数的关系得an+bn=n+2,an•bn=-2n2,所以(an-2)(bn-2)=anbn-2(an+bn)+4=-2n2-2(n+2)+4=-2n(n+1),
则
=-
=-
(
-
),然后代入即可求解.
则
| 1 |
| (an-2)(bn-2) |
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:由根与系数的关系得an+bn=n+2,an•bn=-2n2,
所以(an-2)(bn-2)=anbn-2(an+bn)+4=-2n2-2(n+2)+4=-2n(n+1),
则
=-
=-
(
-
),
∴
+
++
,
=-
[(
-
)+(
-
)+…+(
-
)]=-
(
-
)=-
.
故答案为:-
.
所以(an-2)(bn-2)=anbn-2(an+bn)+4=-2n2-2(n+2)+4=-2n(n+1),
则
| 1 |
| (an-2)(bn-2) |
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| (a2-2)(b2-2) |
| 1 |
| (a3-2)(b3-2) |
| 1 |
| (a2007-2)(b2007-2) |
=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2007 |
| 1 |
| 2008 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2008 |
| 1003 |
| 4016 |
故答案为:-
| 1003 |
| 4016 |
点评:本题考查了根与系数的关系,难度较大,关键是根据根与系数的关系求出一般形式再进行代入求值.
练习册系列答案
相关题目