题目内容
在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是
- A.∠C=90°
- B.a2=b2-c2
- C.c2=2a2
- D.a=b
B
分析:首先根据△ABC角度之间的比,可求出各角的度数.∠C为90度.根据勾股定理可分别判断出各项的真假.
解答:由∠A:∠B:∠C=1:1:2;得:∠A=∠B=45°,∠C=90°;所以A正确.
由勾股定理可得:c2=a2+b2,所以B错误.
因为∠A=∠B=45°,则a=b,同时c2=a2+b2=2a2.所以C、D正确.
故选B.
点评:本题考点:三角形的性质和勾股定理的应用.首先可根据各角度之间的比值得出各角的度数.度数相等的两个角他们所对应的边长度也相等.结合勾股定理即可得出B选项错误.
分析:首先根据△ABC角度之间的比,可求出各角的度数.∠C为90度.根据勾股定理可分别判断出各项的真假.
解答:由∠A:∠B:∠C=1:1:2;得:∠A=∠B=45°,∠C=90°;所以A正确.
由勾股定理可得:c2=a2+b2,所以B错误.
因为∠A=∠B=45°,则a=b,同时c2=a2+b2=2a2.所以C、D正确.
故选B.
点评:本题考点:三角形的性质和勾股定理的应用.首先可根据各角度之间的比值得出各角的度数.度数相等的两个角他们所对应的边长度也相等.结合勾股定理即可得出B选项错误.
练习册系列答案
相关题目
在△ABC中,∠C=90°,BC=12,AB=13,则tanA的值是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
在△ABC中,a=
,b=
,c=2
,则最大边上的中线长为( )
| 2 |
| 6 |
| 2 |
A、
| ||
B、
| ||
| C、2 | ||
| D、以上都不对 |