题目内容

在△ABC中,∠C=90°,AC=3cm,BC=4cm.若⊙A,⊙B 的半径分别为1cm,4cm,则⊙A与⊙B的位置关系是


  1. A.
    外切
  2. B.
    内切
  3. C.
    相交
  4. D.
    外离
A
分析:由∠C=90°,AC=3cm,BC=4cm,根据勾股定理,即可求得AB的长,然后根据圆与圆的位置关系判断条件,确定两圆之间的位置关系.
解答:解:∵∠C=90°,AC=3cm,BC=4cm,
∴AB==5cm,
∵⊙A,⊙B的半径分别为1cm,4cm,
又∵1+4=5,
∴⊙A与⊙B的位置关系是外切.
故选A.
点评:此题考查了圆与圆的位置关系与勾股定理逆定理的应用.注意外离,则P>R+r;外切,则P=R+r;相交,则R-r<P<R+r;内切,则P=R-r;内含,则P<R-r.(P表示圆心距,R,r分别表示两圆的半径).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网