题目内容
(1)已知
| 1 |
| m |
| 2 |
| m+2 |
(2)在(1)的条件下,且
| AP |
| PB |
| 1 |
| 2 |
(3)当
| AP |
| PB |
2-
| ||
2+
|
分析:(1)首先求出m的值,进而由∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD求出即可;
(2)根据已知得出AD,BD的长,再利用△APC∽△DPB得出AC•DP=AP•DB=
×2
=
①,PC•DP=AP•BP=
×
=
②,同理△CPB∽△APD,得出BC•DP=BP•AD=
×2=
③,进而得出AC,BC与DP的关系,进而利用勾股定理得出DP的长,即可得出PC,DC的长;
(3)由
=
,AB=4,则
=
,得出(2+
)AP=4(2-
)-(2-
)AP,要使CD最短,则CD⊥AB于P于是cos∠POD=
=
,
即可得出∠POD的度数,进而得出∠BCD,∠ACD的度数,即可得出m的值.
(2)根据已知得出AD,BD的长,再利用△APC∽△DPB得出AC•DP=AP•DB=
| 4 |
| 3 |
| 3 |
8
| ||
| 3 |
| 2 |
| 3 |
| 8 |
| 3 |
| 16 |
| 9 |
| 8 |
| 3 |
| 16 |
| 3 |
(3)由
| AP |
| PB |
2-
| ||
2+
|
| AP |
| 4-AP |
2-
| ||
2+
|
| 3 |
| 3 |
| 3 |
| OP |
| OD |
| ||
| 2 |
即可得出∠POD的度数,进而得出∠BCD,∠ACD的度数,即可得出m的值.
解答:
解:(1)如图1,
由
=
,
得 m=2,
连结AD、BD
∵AB是⊙O的直径
∴∠ACB=90°,∠ADB=90°
又∵∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD
∴∠ACD=30°,∠BCD=60°;
(2)如图1,连结AD、BD,则∠ABD=∠ACD=30°,AB=4
∴AD=2,BD=2
,
∵
=
,
∴AP=
,BP=
,
∵∠APC=∠DPB,∠ACD=∠ABD
∴△APC∽△DPB
∴
=
=
,
∴AC•DP=AP•DB=
×2
=
①,
PC•DP=AP•BP=
×
=
②
同理△CPB∽△APD
∴
=
,
∴BC•DP=BP•AD=
×2=
③,
由①得AC=
,由③得BC=
,
AC:BC=
:
=
,
在△ABC中,AB=4,
∴(
)2+(
)2=42,
∴DP=
由②PC•DP=PC•
=
,
得PC=
∴DC=CP+PD=
+
=
;
方法二:由①÷③得AC:BC=
:
=
,
在△ABC中,AB=4,AC=
×
=
,
BC=
×2=
由③BC•DP=
•DP=
,
得DP=
由②PC•DP=PC•
=
,
得PC=
∴DC=CP+PD=
+
=
;
(3)如图2,连结OD,由
=
,AB=4,
则
=
,
则(2+
)AP=4(2-
)-(2-
)AP,
则AP=2-
,
OP=2-AP=
要使CD最短,则CD⊥AB于P
于是cos∠POD=
=
,
∵∠POD=30°
∴∠ACD=15°,∠BCD=75°
∴m=5,故存在这样的m值,且m=5.
由
| 1 |
| m |
| 2 |
| m+2 |
得 m=2,
连结AD、BD
∵AB是⊙O的直径
∴∠ACB=90°,∠ADB=90°
又∵∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD
∴∠ACD=30°,∠BCD=60°;
(2)如图1,连结AD、BD,则∠ABD=∠ACD=30°,AB=4
∴AD=2,BD=2
| 3 |
∵
| AP |
| PB |
| 1 |
| 2 |
∴AP=
| 4 |
| 3 |
| 8 |
| 3 |
∵∠APC=∠DPB,∠ACD=∠ABD
∴△APC∽△DPB
∴
| AC |
| DB |
| AP |
| DP |
| PC |
| BP |
∴AC•DP=AP•DB=
| 4 |
| 3 |
| 3 |
8
| ||
| 3 |
PC•DP=AP•BP=
| 2 |
| 3 |
| 8 |
| 3 |
| 16 |
| 9 |
同理△CPB∽△APD
∴
| BP |
| DP |
| BC |
| AD |
∴BC•DP=BP•AD=
| 8 |
| 3 |
| 16 |
| 3 |
由①得AC=
8
| ||
| 3DP |
| 16 |
| 3DP |
AC:BC=
8
| ||
| 3 |
| 16 |
| 3 |
| ||
| 2 |
在△ABC中,AB=4,
∴(
8
| ||
| 3DP |
| 16 |
| 3DP |
∴DP=
2
| ||
| 3 |
由②PC•DP=PC•
2
| ||
| 3 |
| 16 |
| 9 |
得PC=
8
| ||
| 21 |
∴DC=CP+PD=
8
| ||
| 21 |
2
| ||
| 3 |
22
| ||
| 21 |
方法二:由①÷③得AC:BC=
8
| ||
| 3 |
| 16 |
| 3 |
| ||
| 2 |
在△ABC中,AB=4,AC=
4
| ||
| 7 |
| 3 |
4
| ||
| 7 |
BC=
4
| ||
| 7 |
8
| ||
| 7 |
由③BC•DP=
8
| ||
| 7 |
| 16 |
| 3 |
得DP=
2
| ||
| 3 |
由②PC•DP=PC•
2
| ||
| 3 |
| 16 |
| 9 |
得PC=
8
| ||
| 21 |
∴DC=CP+PD=
8
| ||
| 21 |
2
| ||
| 3 |
22
| ||
| 21 |
(3)如图2,连结OD,由
| AP |
| PB |
2-
| ||
2+
|
则
| AP |
| 4-AP |
2-
| ||
2+
|
则(2+
| 3 |
| 3 |
| 3 |
则AP=2-
| 3 |
OP=2-AP=
| 3 |
要使CD最短,则CD⊥AB于P
于是cos∠POD=
| OP |
| OD |
| ||
| 2 |
∵∠POD=30°
∴∠ACD=15°,∠BCD=75°
∴m=5,故存在这样的m值,且m=5.
点评:此题主要考查了圆的综合应用以及相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,熟练利用圆周角定理以及垂径定理得出是解题关键.
练习册系列答案
相关题目