题目内容
如图,?ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=________度.
25
分析:根据平行四边形的性质可知,平行四边形对角相等,邻角互补,所以已知∠A可以求出∠B,再进一步利用直角三角形的性质求解即可.
解答:∵?ABCD
∴AD∥BC
∴∠B=180°-∠A=65°
又∵CE⊥AB,
∴∠BCE=90°-65°=25°.
故答案为25.
点评:运用平行四边形的性质常解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.
分析:根据平行四边形的性质可知,平行四边形对角相等,邻角互补,所以已知∠A可以求出∠B,再进一步利用直角三角形的性质求解即可.
解答:∵?ABCD
∴AD∥BC
∴∠B=180°-∠A=65°
又∵CE⊥AB,
∴∠BCE=90°-65°=25°.
故答案为25.
点评:运用平行四边形的性质常解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.
练习册系列答案
相关题目
| 5 |
| A、当旋转角为90°时,四边形ABEF一定为平行四边形 |
| B、在旋转的过程中,线段AF与EC总相等 |
| C、当旋转角为45°时,四边形BEDF一定为菱形 |
| D、当旋转角为45°时,四边形ABEF一定为等腰梯形 |