题目内容

边长相等的下列两种正多边形的组合,不能作平面镶嵌的是(  )
分析:分别求出各个正多边形每个内角的度数,再结合镶嵌的条件即可作出判断.
解答:解:A、正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,能密铺.
B、正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,能密铺.
C、正三角形的每个内角是60°,正五边形每个内角是180°-360°÷5=108°,60m+108n=360°,m=6-
9
5
n,显然n取任何正整数时,m不能得正整数,故不能铺满.
D、正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,能密铺.
故选:C.
点评:本题考查了平面镶嵌的条件.解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网