题目内容

平面直角坐标系xOy中,抛物线x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1, 0),OB=OC,抛物线的顶点为D
(1) 求此抛物线的解析式;
(2) 若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;
(3) Q为线段BD上一点,点A关于∠AQB的平分线的对称点为,若,求点Q的坐标和此时△的面积.
解:(1)因为平面直角坐标系xOy中,抛物线x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为(1, 0),OB=OC,抛物线的顶点为D.则点C(0,4a+c)A(1,0),令y=0,则得到

抛物线的解析式为.…………………… 3分
(2)点的坐标为.…………………………………………5分
由对称性得点的坐标为. ……………………… 7分
∴符合题意的点P的坐标为.
(3)点Q的坐标为. …………………………………………… 10分
此时.…12分解析:
此题考核二次函数的的解析式的求解,以及运用图像与坐标轴的交点问题,能求解得到a,c关系式,然后把原解析式化简为关于a的表达式,然后借助于根的情况得到点B的坐标,从而得到与坐标轴y轴点C的坐标,得到a的值,得到求解。最后一问利用点A关于∠AQB的平分线的对称点为,对称性求解得到点的坐标,进而求解面积。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网