题目内容
64的立方根为
A. B. C. D.
A
如图5,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是( )
A.60m2 B.63m2
C.64m2 D.66m2
在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。
(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥轴,与对角线AC、边OC分别交于点E、点F。若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围。
从点A(﹣2,3)、B(1,﹣6)、C(﹣2,﹣4)中任取一个点,在y=﹣的图象上的概率是 .
4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(1)班每天阅读时间在0.5小时以内的学生占全班人数的8%.根据统计图解答下列问题:
(1)九年(1)班有 名学生;
(2)补全直方图;
(3)除九年(1)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;
(4)求该年级每天阅读时间不少于1小时的学生有多少人?
如图,m∥n,直线l分别交m、n于点A、点B,AC⊥AB,AC交直线n于点C,若∠1=35°,则∠2等于
A.35° B.45° C.55° D.65°
不等式组的解集是 .
从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是( )
A. =×2 B. =﹣35
C. ﹣=35 D. ﹣=35
对角线互相垂直平分的四边形是( )
(A)平行四边形、菱形 (B)矩形、菱形 (C)矩形、正方形 (D)菱形、正方形