题目内容
试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为___________________
在△ABC中,∠A=105°,∠B=45°,cosC的值是( )
A. B. C. D.
某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.
下列命题正确的是( )
A. 相等的圆周角对的弧相等
B. 等弧所对的弦相等
C. 三点确定一个圆
D. 平分弦的直径垂直于弦
已知BC为半圆O的直径,AB=AF,AC交BF于点M,过A点作AD⊥BC于D,交BF于E,求证:AE=BE.
抛物线有最______点,其坐标是__________
在Rt△ABC中, ∠C=Rt∠ ,AC=3cm, AB=5cm,若以C为圆心,4cm为半径画一个圆,则下列结论中,正确的是( )
A、点A在圆C内,点B在圆C外
B、点A在圆C外,点B在圆C内
C、点A在圆C上,点B在圆C外
D、点A在圆C内,点B在圆C上
箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是 .
如图,在锐角△ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是 .