题目内容
某日西安气温℃~℃,温差是( ).
A. ℃ B. ℃ C. ℃ D. ℃
四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的半圆过点E,圆心为O.
(1)利用图1,求证:四边形ABCD是菱形.
(2)如图2,若CD的延长线与半圆相切于点F,已知直径AB=8.
①连结OE,求△OBE的面积.
②求弧AE的长.
下列说法不正确的是( )
A. 0既不是正数,也不是负数 B. ﹣1是最大的负整数
C. ﹣a一定是负数 D. 倒数等于它本身的数有1和﹣1
如图,直线交双曲线于点、点,交轴于点,点为线段的中点,连接.若,则该双曲线的表达式为__________.
如图,在四边形中,,,,过点作,交于点.若,则的长为( ).
A. B. C. D.
计算:
(1) (2)
(3) (4)
如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )
A. 4米 B. 6米 C. 8米 D. 10米
如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=﹣2x+2的图象.
(1)求A、B、P三点的坐标;
(2)求四边形PQOB的面积.
如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.
(1)由图2可知,点M的运动速度是每秒 cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是 ;
(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.