题目内容
【题目】今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?
【答案】8
【解析】
根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.
解:设:在甲机换了x次.乙机换了y次.丙机换了z次.
在甲机上每换一次多 1 个;
在乙机上每换一次多 3 个;
在丙机上每换一次多 9 个;
进行了12次换币就将一枚硬币换成了81枚,多了80个;
∴![]()
由②-①,得:2y+8z=68,
∴y+4z=34,
∴y=34-4z,
结合x+y+z=12,能满足上面两式的值为:
∴
;
即在丙机换了8次.
故答案为:8.
练习册系列答案
相关题目
【题目】如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;
![]()
(1)填表
剪的次数 | 1 | 2 | 3 | 4 | 5 |
正方形个数 | 4 | 7 | 10 |
|
|
(2)如果剪n次,共剪出多少个小正方形?
(3)能否经过若干次分割后共得到2019片纸片?若能,请直接写出相应的次数,若不能,请说明理由.