题目内容

如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH是


  1. A.
    平行四边形
  2. B.
    矩形
  3. C.
    菱形
  4. D.
    正方形
A
分析:根据三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,进而得出EH∥FG,EH=FG,再利用平行四边形的判定得出四边形EFGH的形状.
解答:解:连接BD,AC.
∵E、F、G、H分别是四边形ABCD四条边的中点,
∴EH是△ABD的中位线,FG是△CBD的中位线,
∴EH∥BD,EH=BD,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,
又∵BD与AC不能确定是否相等或垂直,
∴四边形EFGH只能是平行四边形.
故选:A.
点评:此题主要考查了平行四边形的判定以及三角形的中位线定理,根据已知利用三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网