题目内容

半径是2和3的两圆交于M、N两点,过交点分别作各圆的切线且相互经过另一个圆的圆心,则公共弦MN之长为


  1. A.
    6
  2. B.
    12
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:根据相交两圆的性质以及切线的判定得出OO′⊥MN,MI=IN,利用三角形面积公式得出MI=进而求出即可.
解答:解:如图所示:连接MN,
∵过交点M,N分别作各圆的切线且相互经过另一个圆的圆心,
∴OM⊥O′M,
∵MO=2,MO′=3,
∴OO′==
由题意可得:OO′⊥MN,MI=IN,
∴MI•OO′=MO•MO′,
∴MI===
∴MN=2×=
故选:C.
点评:此题主要考查了相交两圆的性质以及切线的判定等知识,根据已知得出OM⊥O′M是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网