题目内容
(2004•南宁)下面四个条件中,请以其中两个为已知条件,第三个为结论,推出一个真命题(只需写出一种情况)并证明.①AE=AD;②AB=AC;③OB=OC;④∠B=∠C.
【答案】分析:本题可根据全等三角形的判定中AAS、ASA、SAS、SSS等条件进行判断,看哪些条件可判断两三角形全等.全等后又能得出哪些等量关系.
解答:解:已知①②,求证④.
证明如下:在△ACD与△ABE中,
∵AC﹦AB,∠A﹦∠A,AE﹦AD,
∴△ACD≌△ABE(SAS).
∴∠B﹦∠C.
另三种情况:
①如果AE=AD,AB=AC,那么OB=OC.
②如果AE=AD,∠B=∠C,那么AB=AC.
③如果OB=OC,∠B=∠C,那么AE=AD.
点评:本题考查了全等三角形的判定和性质,熟练掌握这些知识点是解题的关键.
解答:解:已知①②,求证④.
证明如下:在△ACD与△ABE中,
∵AC﹦AB,∠A﹦∠A,AE﹦AD,
∴△ACD≌△ABE(SAS).
∴∠B﹦∠C.
另三种情况:
①如果AE=AD,AB=AC,那么OB=OC.
②如果AE=AD,∠B=∠C,那么AB=AC.
③如果OB=OC,∠B=∠C,那么AE=AD.
点评:本题考查了全等三角形的判定和性质,熟练掌握这些知识点是解题的关键.
练习册系列答案
相关题目
(2004•南宁)某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:
(1)假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集;
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?
| 饮料 每千克含量 | 甲 | 乙 |
| A(单位:千克) | 0.5 | 0.2 |
| B(单位:千克) | 0.3 | 0.4 |
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?