题目内容

如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.

(1)求BC的长;

(2)求证:PB是⊙O的切线.

 

【答案】

(1)2(2)见解析

【解析】解:(1)连接OB,

∵弦AB⊥OC,劣弧AB的度数为120°,

∴弧BC与弧AC的度数为:60°。∴∠BOC=60°。

∵OB=OC,∴△OBC是等边三角形。

∵OC =2,∴BC=OC=2。

(2)证明:∵OC=CP,BC=OC,∴BC=CP。

∴∠CBP=∠CPB。

∵△OBC是等边三角形,∴∠OBC=∠OCB=60°。∴∠CBP=30°。

∴∠OBP=∠CBP+∠OBC=90°。∴OB⊥BP。

∵点B在⊙O上,∴PB是⊙O的切线。

(1)连接OB,由弦AB⊥OC,劣弧AB的度数为120°,易证得△OBC是等边三角形,则可求得BC的长。

(2)由OC=CP=2,△OBC是等边三角形,可求得BC=CP,即可得∠P=∠CBP,又由等边三角形的性质,∠OBC=60°,∠CBP=30°,则可证得OB⊥BP,从而证得PB是⊙O的切线。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网