题目内容
计算题:(1)(
| 3b2 |
| 4a3 |
| 3 |
| 2 |
| 1 |
| 2m |
| 1 |
| m+n |
| m+n |
| 2m |
| 1 |
| 1-x |
| x2-x+1 |
| x2-2x+1 |
分析:(1)先乘方,再利用分式的乘法求解即可;
(2)首先利用乘法的分配律去括号,再利用分式的加法求解即可;
(3)首先进行乘方运算,再进行分式的除法运算,最后进行加法运算.
(2)首先利用乘法的分配律去括号,再利用分式的加法求解即可;
(3)首先进行乘方运算,再进行分式的除法运算,最后进行加法运算.
解答:解:(1)(
)2•(-
a2b)3,
=
•-
a6b3,
=-
b7;
(2)
-
(
-m-n),
=
-
+1,
=1;
(3)1-(1-
)2÷
,
=1-(
)2•
,
=1-
•
,
=1-
,
=
.
| 3b2 |
| 4a3 |
| 3 |
| 2 |
=
| 9b4 |
| 16a6 |
| 27 |
| 8 |
=-
| 243 |
| 128 |
(2)
| 1 |
| 2m |
| 1 |
| m+n |
| m+n |
| 2m |
=
| 1 |
| 2m |
| 1 |
| 2m |
=1;
(3)1-(1-
| 1 |
| 1-x |
| x2-x+1 |
| x2-2x+1 |
=1-(
| 1-x-1 |
| 1-x |
| (x-1)2 |
| x2-x+1 |
=1-
| x2 |
| (x-1)2 |
| (x-1)2 |
| x2-x+1 |
=1-
| x2 |
| x2-x+1 |
=
| 1-x |
| x2-x+1 |
点评:此题考查了分式的混合运算.解题的关键是注意运算顺序与法则.
练习册系列答案
相关题目