题目内容
【题目】如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB.设BE=a,DC=b,那么AB=_____.(用含a、b的式子表示AB)
![]()
【答案】![]()
【解析】
只要证明△FAE≌△DAE,推出EF=ED,∠ABF=∠C=45°,由∠EBF=∠ABF+∠ABE=90°,推出
,可得
,根据AB=BCcos45°即可解决问题.
证明:如图,
![]()
∵△DAC≌△FAB,
∴AD=AF,∠DAC=∠FAB,
∴∠FAD=90°,
∵∠DAE=45°,
∴∠DAC+∠BAE=∠FAB+∠BAE=∠FAE=45°,
在△FAE和△DAE中,
,
∴△FAE≌△DAE,
∴EF=ED,∠ABF=∠C=45°,
∵∠EBF=∠ABF+∠ABE=90°,
∴
,
∴BC=a+b+
,
∴
.
故答案为
.
练习册系列答案
相关题目