题目内容

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则关于x的一元二次方程ax2+bx+c=0(a≠0)的根为________.

x1=-1,x2=3
分析:关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点.
解答:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(-1,0),对称轴是x=1.
设该抛物线与x轴的另一个交点是(x,0).则
=1,
解得,x=3,
即该抛物线与x轴的另一个交点是(3,0).
所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=-1,x2=3.
故答案是:x1=-1,x2=3.
点评:本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网