题目内容
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则关于x的一元二次方程ax2+bx+c=0(a≠0)的根为________.
x1=-1,x2=3
分析:关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点.
解答:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(-1,0),对称轴是x=1.
设该抛物线与x轴的另一个交点是(x,0).则
=1,
解得,x=3,
即该抛物线与x轴的另一个交点是(3,0).
所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=-1,x2=3.
故答案是:x1=-1,x2=3.
点评:本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.
分析:关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点.
解答:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(-1,0),对称轴是x=1.
设该抛物线与x轴的另一个交点是(x,0).则
解得,x=3,
即该抛物线与x轴的另一个交点是(3,0).
所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=-1,x2=3.
故答案是:x1=-1,x2=3.
点评:本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |