题目内容

21、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).
(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
分析:过点F作FG∥EM交CD于G.则MG=EF=10米,根据∠FGN=∠α=36°即可求出∠GFN的度数,进而可得出FN的长,利用FR=FN×sinβ即可得出答案.
解答:解:过点F作FG∥EM交CD于G,则MG=EF=10米.
∵∠FGN=∠α=36°.
∴∠GFN=∠β-∠FGN=72°-36°=36°.
∴∠FGN=∠GFN,
∴FN=GN=50-10=40(米).
在Rt△FNR中,
FR=FN×sinβ=40×sin72°=40×0.95≈38(米).
故答案为:38米.
点评:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网