题目内容
把方程(2x+1)2﹣x=(x+1)(x﹣1)化成一般形式是 .
如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是( )
A.70° B.60° C.50° D.40°
用适当的方法解下列方程
(1)x2+10x+16=0
(2)3x(x﹣1)=2(x﹣1)
已知抛物线C1:y=ax2+4ax+4a+b(a≠0,b>0)的顶点为M,经过原点O且与x轴另一交点为A.
(1)求点A的坐标;
(2)若△AMO为等腰直角三角形,求抛物线C1的解析式;
(3)现将抛物线C1绕着点P(m,0)旋转180°后得到抛物线C2,若抛物线C2的顶点为N,当b=1,且顶点N在抛物线C1上时,求m的值.
如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为 .
某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为( )
A.48(1﹣x)2=36 B.48(1+x)2=36
C.36(1﹣x)2=48 D.36(1+x)2=48
方程(x﹣2)(x+3)=0的解是( )
A.x=2 B.x=﹣3
C.x1=﹣2,x2=3 D.x1=2,x2=﹣3
抛物线y=2x2+3x﹣1向右平移2个单位,再向上平移3个单位,得到新的抛物线解析式是 .
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD与BC相交于点M,且BM=MC,过点D作BC的平行线,分别与AB、AC的延长线相交于点E、F;
(1)求证:EF与⊙O相切;
(2)若BC=2,MD=,求CE的长.