题目内容

【题目】如图,四边形ABCD中,AE平分∠BAD,DE平分∠ADC.
(1)如果∠B+∠C=120°,则∠AED的度数= . (直接写出结果)
(2)根据(1)的结论,猜想∠B+∠C与∠AED之间的关系,并证明.

【答案】
(1)60°
(2)解:∠AED= (∠B+∠C).

理由如下:在四边形ABCD中,

∵∠BAD+∠CDA+∠B+∠C=360°,

∴∠BAD+∠CDA=360°﹣(∠B+∠C),

又∵AE平分∠BAD,DE平分∠ADC,

∴∠EAD= ∠BAD,∠EDA= ∠ADC,

∴∠EAD+∠EDA= ∠BAD+ ∠ADC= [360°﹣(∠B+∠C)],

在△AED中,又∵∠AED=180°﹣(∠EAD+∠EDA),

=180°﹣ [360°﹣(∠B+∠C)],

= (∠B+∠C),

故∠AED= (∠B+∠C).


【解析】解:(1)在四边形ABCD中,∵∠B+∠C=120°, ∴∠BAD+∠CDA=360°﹣120°=240°,
∵AE平分∠BAD,DE平分∠ADC,
∴∠EAD= ∠BAD,∠EDA= ∠ADC,
∴∠EAD+∠EDA= ∠BAD+ ∠ADC= (∠BAD+∠CDA)= ×240°=120°,
在△AED中,∠AED=180°﹣(∠EAD+∠EDA),
=180°﹣120°,
=60°;
所以答案是:60°.
【考点精析】本题主要考查了多边形内角与外角的相关知识点,需要掌握多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网