题目内容
已知x2+x+
+
=6,若设x+
=y,则原方程可化成整式方程( )
| 3 |
| x |
| 9 |
| x2 |
| 3 |
| x |
| A、y2+y-6=0 |
| B、y2+y=0 |
| C、y2+y-8=0 |
| D、y2+y-12=0 |
分析:观察式子,有平方关系的分式即x2+6+
=(x+
)2,故设x+
=y,则(x+
)2=y2,换元法解方程.
| 9 |
| x2 |
| 3 |
| x |
| 3 |
| x |
| 3 |
| x |
解答:解:设x+
=y,则(x+
)2=y2,
整理得:(x+
)2+(x+
)-12=0,
∴化成整式方程为y2+y-12=0.故选D.
| 3 |
| x |
| 3 |
| x |
整理得:(x+
| 3 |
| x |
| 3 |
| x |
∴化成整式方程为y2+y-12=0.故选D.
点评:当分式方程比较复杂时,通常采用换元法使分式方程简化.需注意(x+
)2=x2+
-2×x×
=y2-2.
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
练习册系列答案
相关题目
已知x2+3x+☆分解因式得 (x+1)(x+◇),则☆的值为( )
| A.2 | B.3 | C.-2 | D.-3 |