题目内容
如图1,在平面直角坐标系中,以坐标原点O为圆心的⊙O的半径为(1) 求点A的坐标及∠CAO的度数;
(2) ⊙B以每秒1个单位长度的速度沿X轴负方向平移,同时,直线l绕点A顺时针匀速旋转.当⊙B第一次与⊙O相切时,直线l也恰好与⊙B第一次相切.问:直线AC绕点A每秒旋转多少度?
(3)如图2.过A,O,C三点作⊙O1 ,点E是劣弧
解:(1)、A(-
,0)
∵C(0,-
),∴OA=OC。
∵OA⊥OC ∴∠CAO=450----------------------------4分
(2)如图,设⊙B平移t秒到⊙B1处与⊙O第一次相切,此时,直线l旋转到l’恰好与⊙B1第一次相切于点P, ⊙B1与X轴相切于点N,
连接B1O,B1N,则MN=t, OB1=
B1N⊥AN ∴MN=3 即t=3-------------2分
连接B1A, B1P 则B1P⊥AP B1P = B1N ∴∠PA B1=∠NAB1
∵OA= OB1=
∴∠A B1O=∠NAB1 ∴∠PA B1=∠A B1O ∴PA∥B1O
在Rt⊿NOB1中,∠B1ON=450, ∴∠PAN=450, ∴∠1= 900.
∴直线AC绕点A平均每秒300.------------------------------------4分
(3).
的值不变,等于
,如图在CE上截取CK=EA,连接OK,
∵∠OAE=∠OCK, OA=OC ∴⊿OAE≌⊿OCK,
∴OE=OK ∠EOA=∠KOC ∴∠EOK=∠AOC= 900.
∴EK=
EO ,


∴
=
----------------------------------------------4分 解析:
(1)已知点A,C的坐标,故可推出OA=OC,最后可得∠CAO=45°.
(2)依题意,设⊙B平移t秒到⊙B1处与⊙O第一次相切,连接B1O,B1N,则MN=3.连接B1A,B1P可推出∠PAB1=∠NAB1.又因为OA=OB1=
,故∠AB1O=∠NAB1,∠PAB1=∠AB1O继而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直线AC绕点A平均每秒30度.
(3)在CE上截取CK=EA,连接OK,证明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可证明
∵C(0,-
∵OA⊥OC ∴∠CAO=450----------------------------4分
(2)如图,设⊙B平移t秒到⊙B1处与⊙O第一次相切,此时,直线l旋转到l’恰好与⊙B1第一次相切于点P, ⊙B1与X轴相切于点N,
连接B1O,B1N,则MN=t, OB1=
连接B1A, B1P 则B1P⊥AP B1P = B1N ∴∠PA B1=∠NAB1
∵OA= OB1=
在Rt⊿NOB1中,∠B1ON=450, ∴∠PAN=450, ∴∠1= 900.
∴直线AC绕点A平均每秒300.------------------------------------4分
(3).
∵∠OAE=∠OCK, OA=OC ∴⊿OAE≌⊿OCK,
∴OE=OK ∠EOA=∠KOC ∴∠EOK=∠AOC= 900.
∴EK=
|
(1)已知点A,C的坐标,故可推出OA=OC,最后可得∠CAO=45°.
(2)依题意,设⊙B平移t秒到⊙B1处与⊙O第一次相切,连接B1O,B1N,则MN=3.连接B1A,B1P可推出∠PAB1=∠NAB1.又因为OA=OB1=
(3)在CE上截取CK=EA,连接OK,证明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可证明
练习册系列答案
相关题目