题目内容
分析:作出关于AD对称的图形,借助轴对称的性质,得到BD=DE,借助∠B=2∠C,得到AE=EC.根据题意有CD=DE+EC,将等量关系代入可得CD=DE+EC=AB+BD.
解答:
解:在CD上取一点E使DE=BD,连接AE.
可得AB与AE关于AD对称,BD=DE,
∠B=∠AED=∠C+∠EAC=2∠C,
∴∠EAC=∠C,
∴AE=EC;
则CD=DE+EC=AB+BD.
可得AB与AE关于AD对称,BD=DE,
∠B=∠AED=∠C+∠EAC=2∠C,
∴∠EAC=∠C,
∴AE=EC;
则CD=DE+EC=AB+BD.
点评:本题考查轴对称的性质与运用.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
练习册系列答案
相关题目