题目内容

(2004•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,
求证:(1)AF=BE;
(2)AF2=AE•EC.

【答案】分析:(1)根据平行构造相似三角形,利用相似三角形的性质解答;
(2)因为AB⊥BC,所以△ABC为直角三角形,又因为AC⊥BD,所以可知△BCE∽△ABE,利用相似三角形的性质即可解答.
解答:证明:(1)∵EF∥AB,
∴△DFE∽△DAB.
=
又∵DA=DB,
∴DF=DE.
∴DA-DF=DB-DE,即AF=BE.

(2)∵AB⊥BC,
∴△ABC为直角三角形.
又∵AC⊥BD,
∴△BCE∽△ABE.
=,即EB2=AE•EC.
又∵AF=EB,
∴AF2=AE•EC.
点评:解答此题的关键是根据平行和直角三角形的性质找出图中的相似三角形,利用相似三角形的性质解答此题.要知道,EB2=AE•EC属于射影定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网