题目内容
已知关于x的方程x2-2ax-a+2b=0,其中a、b为实数.(1)若此方程有一个根为2a(a<0),判断a与b的大小关系并说明理由;
(2)若对于任何实数a,此方程都有实数根,求b的取值范围.
分析:(1)把x=2a代入求值即可;
(2)只要让根的判别式△=b2-4ac≥0,进行判断即可.
(2)只要让根的判别式△=b2-4ac≥0,进行判断即可.
解答:解:(1)∵方程x2-2ax-a+2b=0有一个根为2a,
∴4a2-4a2-a+2b=0,
整理,得b=
,
∵a<0,
∴a<
,
即a<b;
(2)△=4a2-4(-a+2b)=4a2+4a-8b,
∵对于任何实数a,此方程都有实数根,
∴对于任何实数a,都有4a2+4a-8b≥0,即a2+a-2b≥0,
∴对于任何实数a,都有b≤
,
∵
=
(a+
)2-
,
当a=-
时,
有最小值-
,
∴b的取值范围是b≤-
.
∴4a2-4a2-a+2b=0,
整理,得b=
| a |
| 2 |
∵a<0,
∴a<
| a |
| 2 |
即a<b;
(2)△=4a2-4(-a+2b)=4a2+4a-8b,
∵对于任何实数a,此方程都有实数根,
∴对于任何实数a,都有4a2+4a-8b≥0,即a2+a-2b≥0,
∴对于任何实数a,都有b≤
| a2+a |
| 2 |
∵
| a2+a |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
当a=-
| 1 |
| 2 |
| a2+a |
| 2 |
| 1 |
| 8 |
∴b的取值范围是b≤-
| 1 |
| 8 |
点评:本题综合考查了根的判别式和与一元二次方程系数的关系及二次函数的最值等知识点.
练习册系列答案
相关题目