题目内容
当k=| 1 |
| x1 |
| 1 |
| x2 |
分析:由于原方程有不相等的实数根,利用根与系数的关系,可求出x1+x2,x1x2的值,然后再代入
+
=3,即可求出k的值.
| 1 |
| x1 |
| 1 |
| x2 |
解答:解:根据题意得
x1+x2=-
=-
=
,
x1x2=
=
,
又∵
+
=3,
∴
+
=
=
×
=
=3,
即2(k+1)=3(k-1),
解得k=5.
x1+x2=-
| b |
| a |
| -2(k+1) |
| k |
| 2(k+1) |
| k |
x1x2=
| c |
| a |
| k-1 |
| k |
又∵
| 1 |
| x1 |
| 1 |
| x2 |
∴
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1x2 |
| 2(k+1) |
| k |
| k |
| k-1 |
| 2(k+1) |
| k-1 |
即2(k+1)=3(k-1),
解得k=5.
点评:本题利用了根与系数的关系,即一个一元二次方程ax2+bx+c=0的两个根x1、x2存在这样的关系:x1+x2=-
,x1x2=
.
| b |
| a |
| c |
| a |
练习册系列答案
相关题目