题目内容
证明:当a是奇数时,a(a2-1)能被24整除.分析:设a=2n-1,从而转化为n(n-1)(2n-1)能被6整除,然后分步证明n(n-1)(2n-1)能被2整除也能被3整除即可.
解答:证明:设a=2n-1,则a(a2-1)=(2n-1)(2n-2)2n,
∴
=
,
∴只需证明n(n-1)(2n-1)能被6整除即可,
∵n和n-1必是一奇一偶,
∴n(n-1)必能被2整除,
设n=3k,则n能被3整除,
设n=3k+1,则n-1能被3整除,
设n=3k+2,则2n-1=6k+4-1=6k+3能被3整除,
所以n(n-1)(2n-1)能被3整除,
∴n(n-1)(2n-1)能被6整除.
综上证明可得a(a2-1)能被24整除.
∴
| a(a2-1) |
| 24 |
| (2n-1)(n-1)n |
| 6 |
∴只需证明n(n-1)(2n-1)能被6整除即可,
∵n和n-1必是一奇一偶,
∴n(n-1)必能被2整除,
设n=3k,则n能被3整除,
设n=3k+1,则n-1能被3整除,
设n=3k+2,则2n-1=6k+4-1=6k+3能被3整除,
所以n(n-1)(2n-1)能被3整除,
∴n(n-1)(2n-1)能被6整除.
综上证明可得a(a2-1)能被24整除.
点评:本题考查数的整除性问题,难度较大,关键是分步证明,这种思想在证明整除的时候经常用到,注意理解并熟练掌握.
练习册系列答案
相关题目