ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Õý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬µãOÎª×ø±êԵ㣬µãAÔÚxÖáÉÏ£¬µãCÔÚyÖáÉÏ£¬µãB¡¢µãP£¨m£¬n£©ÔÚº¯Êýy=
£¨k£¾0£¬x£¾0£©µÄͼÏóÉÏ£®¹ýµãP·Ö±ð×÷xÖá¡¢yÖáµÄ´¹Ïߣ¬´¹×ãΪE¡¢F£®
£¨1£©ÇóBµã×ø±êºÍkµÄÖµ£»
£¨2£©µ±PµãµÄºá×ø±ê´óÓÚBµãµÄºá×ø±ê£¬ÇÒSËıßÐÎAEPG=
ʱ£¬ÇóPAËùÔÚµÄÖ±Ïß·½³Ì£»
£¨3£©Çóº¯Êýy=m+nµÄ×îСֵ£»
£¨×¢£º¿ÉʹÓÃÈçÏÂÆ½¾ùÖµ¶¨Àí£ºÈôa£¾0£¬b£¾0£¬Ôòa+b¡Ý2
£¬µ±ÇÒ½öµ±a=bʱµÈºÅ³ÉÁ¢£®£©
½â£º£¨1£©¡ßÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬
¡àAB=BC=3£¬
¼´Bµã×ø±êΪ£¨3£¬3£©£¬
°ÑB£¨3£¬3£©´úÈ뺯Êýy=
ÖУ¬
µÃk=xy=9£»
£¨2£©ÉèP£¨a£¬
£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=
£¬
ÓÉSËıßÐÎAEPG=PG¡ÁPE=
£¬µÃ£¨a-3£©•
=
£¬
½âµÃa=6£¬¹ÊP£¨6£¬
£©£¬
ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P£¨6£¬
£©£¬A£¨3£¬0£©Á½µã×ø±ê´úÈ룬
µÃ
£¬
½âµÃ
£¬
¡àÖ±ÏßPAµÄ½âÎöʽΪy=
x-
£»
£¨3£©¡ßµãP£¨m£¬n£©ÔÚË«ÇúÏßy=
ÉÏ£¬
¡àn=
£¬
¡ày=m+n=m+
¡Ý2
=6£¬
¡àº¯Êýy=m+nµÄ×îСֵΪ6£®
·ÖÎö£º£¨1£©¸ù¾ÝÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬¿ÉÇóBµã×ø±êΪ£¨3£¬3£©£¬°ÑBµã×ø±ê´úÈ뺯Êýy=
ÖУ¬¿ÉÇók=9£»
£¨2£©ÉèP£¨a£¬
£©£¬£¨a£¾3£©£¬ÔòPG=a-3£¬PE=
£¬ÓÉSËıßÐÎAEPG=PG¡ÁPE=
£¬Áз½³ÌÇóa£¬ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P¡¢AÁ½µã×ø±ê´úÈë¿ÉÇóÖ±ÏßPAµÄ½âÎöʽ£»
£¨3£©µãP£¨m£¬n£©ÔÚË«ÇúÏßy=
ÉÏ£¬¿ÉÖªn=
£¬¹Êy=m+n=m+
£¬ÔÙ¸ù¾Ýƽ¾ùÖµ¶¨ÀíÇó×îСֵ£®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²é·´±ÈÀýº¯Êý½âÎöʽ¡¢Ò»´Îº¯Êý½âÎöʽµÄÇ󷨣¬×¢Òâͨ¹ý½â·½³ÌÇóµãµÄ×ø±ê£¬Áз½³Ì×éÇóÖ±ÏߵĽâÎöʽ£®Í¬Ê±Òª×¢ÒâÔËÓÃÊýÐνáºÏµÄ˼Ï룮
¡àAB=BC=3£¬
¼´Bµã×ø±êΪ£¨3£¬3£©£¬
°ÑB£¨3£¬3£©´úÈ뺯Êýy=
µÃk=xy=9£»
£¨2£©ÉèP£¨a£¬
ÓÉSËıßÐÎAEPG=PG¡ÁPE=
½âµÃa=6£¬¹ÊP£¨6£¬
ÉèÖ±ÏßPA½âÎöʽΪy=kx+b£¬½«P£¨6£¬
µÃ
½âµÃ
¡àÖ±ÏßPAµÄ½âÎöʽΪy=
£¨3£©¡ßµãP£¨m£¬n£©ÔÚË«ÇúÏßy=
¡àn=
¡ày=m+n=m+
¡àº¯Êýy=m+nµÄ×îСֵΪ6£®
·ÖÎö£º£¨1£©¸ù¾ÝÕý·½ÐÎOABCµÄÃæ»ýÊÇ9£¬¿ÉÇóBµã×ø±êΪ£¨3£¬3£©£¬°ÑBµã×ø±ê´úÈ뺯Êýy=
£¨2£©ÉèP£¨a£¬
£¨3£©µãP£¨m£¬n£©ÔÚË«ÇúÏßy=
µãÆÀ£º´ËÌâÖ÷Òª¿¼²é·´±ÈÀýº¯Êý½âÎöʽ¡¢Ò»´Îº¯Êý½âÎöʽµÄÇ󷨣¬×¢Òâͨ¹ý½â·½³ÌÇóµãµÄ×ø±ê£¬Áз½³Ì×éÇóÖ±ÏߵĽâÎöʽ£®Í¬Ê±Òª×¢ÒâÔËÓÃÊýÐνáºÏµÄ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿