题目内容
分析:本题考查的知识点是方程的构造与应用,要求ACB的长度,由AmC=40厘米,我们只要求出BC长即可,我们不妨设BC=x厘米,甲球速度为v甲,乙球速度为v乙.然后根据相遇问题中时间相等,构造两次相遇时的方程,解方程组即可求出答案.
解答:解:设BC=x厘米.
甲球速度为v甲,乙球速度为v乙.
根据二次从出发到相遇二球运动的时间都相同,
可得第一次等候时方程
=
第二次等候时方程
=
.
由此可得
=
,
(x-40)(x-80)=0.
由于已知条件v甲≠v乙,
∴x≠40,
x=80(厘米)
ACB=40+80=120(厘米).
甲球速度为v甲,乙球速度为v乙.
根据二次从出发到相遇二球运动的时间都相同,
可得第一次等候时方程
| 40 |
| V甲 |
| x |
| V乙 |
第二次等候时方程
| 300-20-x |
| 2V甲 |
| x+20 | ||
|
由此可得
| x |
| 40 |
| 4(x+20) |
| 280-x |
(x-40)(x-80)=0.
由于已知条件v甲≠v乙,
∴x≠40,
x=80(厘米)
ACB=40+80=120(厘米).
点评:本题考查了弧长的计算,方程与函数思想是中学阶段的四大数学思想之一,在利用方程思想解决问题时,我们要解决两个问题:一是谁是未知数,一般由“求谁设谁”的原则来决定;二是找等量关系,如本题中相遇问题的时间相等.并由些构造方程,进行求解.
练习册系列答案
相关题目
A、70
| ||
| B、350cm | ||
C、280
| ||
| D、300cm |