题目内容
因式分解(x+1)4+(x+3)4-272=______.
令x+2=t,
∴原式=(t-1)4+(t+1)4-272,
=2(t4+6t2-135),
=2(t2+15)(t2-9),
=2(t2+15)(t+3)(t-3),
再将x+2=t代入即为:
原式=2[(x+2)2+15](x+2+3)(x+2-3),
=2(x2+4x+19)(x+5)(x-1).
故答案为:2(x2+4x+19)(x+5)(x-1).
∴原式=(t-1)4+(t+1)4-272,
=2(t4+6t2-135),
=2(t2+15)(t2-9),
=2(t2+15)(t+3)(t-3),
再将x+2=t代入即为:
原式=2[(x+2)2+15](x+2+3)(x+2-3),
=2(x2+4x+19)(x+5)(x-1).
故答案为:2(x2+4x+19)(x+5)(x-1).
练习册系列答案
相关题目