ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Å×ÎïÏßy=-£¨1£©ÇóÖ±ÏßABµÄº¯Êý¹ØÏµÊ½£»
£¨2£©¶¯µãPÔÚÏß¶ÎOCÉÏ´ÓÔµã³ö·¢ÒÔÿÃëÒ»¸öµ¥Î»µÄËÙ¶ÈÏòCÒÆ¶¯£¬¹ýµãP×÷PN¡ÍxÖᣬ½»Ö±ÏßABÓÚµãM£¬½»Å×ÎïÏßÓÚµãN£®ÉèµãPÒÆ¶¯µÄʱ¼äΪtÃ룬MNµÄ³¤¶ÈΪs¸öµ¥Î»£¬ÇósÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ötµÄȡֵ·¶Î§£»
£¨3£©ÉèÔÚ£¨2£©µÄÌõ¼þÏ£¨²»¿¼ÂǵãPÓëµãO£¬µãCÖØºÏµÄÇé¿ö£©£¬Á¬½ÓCM£¬BN£¬µ±tΪºÎֵʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ¿ÎʶÔÓÚËùÇóµÄtÖµ£¬Æ½ÐÐËıßÐÎBCMNÊÇ·ñÁâÐΣ¿Çë˵Ã÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÓÉÌâÒâÒ×ÇóµÃAÓëBµÄ×ø±ê£¬È»ºóÓдý¶¨ÏµÊý·¨£¬¼´¿ÉÇóµÃÖ±ÏßABµÄº¯Êý¹ØÏµÊ½£»
£¨2£©ÓÉs=MN=NP-MP£¬¼´¿ÉµÃs=-
t2+
t+1-£¨
t+1£©£¬»¯¼ò¼´¿ÉÇóµÃ´ð°¸£»
£¨3£©ÈôËıßÐÎBCMNΪƽÐÐËıßÐΣ¬ÔòÓÐMN=BC£¬¼´¿ÉµÃ·½³Ì£º-
t2+
t=
£¬½â·½³Ì¼´¿ÉÇóµÃtµÄÖµ£¬ÔÙ·Ö±ð·ÖÎötÈ¡ºÎֵʱËıßÐÎBCMNΪÁâÐμ´¿É£®
½â´ð£º½â£º£¨1£©¡ßµ±x=0ʱ£¬y=1£¬
¡àA£¨0£¬1£©£¬
µ±x=3ʱ£¬y=-
×32+
×3+1=2.5£¬
¡àB£¨3£¬2.5£©£¬
ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£¬
Ôò£º
£¬
½âµÃ£º
£¬
¡àÖ±ÏßABµÄ½âÎöʽΪy=
x+1£»
£¨2£©¸ù¾ÝÌâÒâµÃ£ºs=MN=NP-MP=-
t2+
t+1-£¨
t+1£©=-
t2+
t£¨0¡Üt¡Ü3£©£»
£¨3£©ÈôËıßÐÎBCMNΪƽÐÐËıßÐΣ¬ÔòÓÐMN=BC£¬´Ëʱ£¬ÓÐ-
t2+
t=
£¬
½âµÃt1=1£¬t2=2£¬
¡àµ±t=1»ò2ʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ®
¢Ùµ±t=1ʱ£¬MP=
£¬NP=4£¬¹ÊMN=NP-MP=
£¬
ÓÖÔÚRt¡÷MPCÖУ¬MC=
£¬¹ÊMN=MC£¬´ËʱËıßÐÎBCMNΪÁâÐΣ¬
¢Úµ±t=2ʱ£¬MP=2£¬NP=
£¬¹ÊMN=NP-MP=
£¬
ÓÖÔÚRt¡÷MPCÖУ¬MC=
£¬¹ÊMN¡ÙMC£¬´ËʱËıßÐÎBCMN²»ÊÇÁâÐΣ®
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬Ï߶εij¤Ó뺯Êý¹ØÏµÊ½Ö®¼äµÄ¹ØÏµ£¬Æ½ÐÐËıßÐÎÒÔ¼°ÁâÐεÄÐÔÖÊÓëÅж¨µÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇÊýÐνáºÏ˼ÏëµÄÓ¦Óã®
£¨2£©ÓÉs=MN=NP-MP£¬¼´¿ÉµÃs=-
£¨3£©ÈôËıßÐÎBCMNΪƽÐÐËıßÐΣ¬ÔòÓÐMN=BC£¬¼´¿ÉµÃ·½³Ì£º-
½â´ð£º½â£º£¨1£©¡ßµ±x=0ʱ£¬y=1£¬
¡àA£¨0£¬1£©£¬
µ±x=3ʱ£¬y=-
¡àB£¨3£¬2.5£©£¬
ÉèÖ±ÏßABµÄ½âÎöʽΪy=kx+b£¬
Ôò£º
½âµÃ£º
¡àÖ±ÏßABµÄ½âÎöʽΪy=
£¨2£©¸ù¾ÝÌâÒâµÃ£ºs=MN=NP-MP=-
£¨3£©ÈôËıßÐÎBCMNΪƽÐÐËıßÐΣ¬ÔòÓÐMN=BC£¬´Ëʱ£¬ÓÐ-
½âµÃt1=1£¬t2=2£¬
¡àµ±t=1»ò2ʱ£¬ËıßÐÎBCMNΪƽÐÐËıßÐΣ®
¢Ùµ±t=1ʱ£¬MP=
ÓÖÔÚRt¡÷MPCÖУ¬MC=
¢Úµ±t=2ʱ£¬MP=2£¬NP=
ÓÖÔÚRt¡÷MPCÖУ¬MC=
µãÆÀ£º´ËÌ⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬Ï߶εij¤Ó뺯Êý¹ØÏµÊ½Ö®¼äµÄ¹ØÏµ£¬Æ½ÐÐËıßÐÎÒÔ¼°ÁâÐεÄÐÔÖÊÓëÅж¨µÈ֪ʶ£®´ËÌâ×ÛºÏÐÔºÜÇ¿£¬ÄѶȽϴ󣬽âÌâµÄ¹Ø¼üÊÇÊýÐνáºÏ˼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢-1£¼x£¼3 | B¡¢3£¼x£¼-1 | C¡¢x£¾-1»òx£¼3 | D¡¢x£¼-1»òx£¾3 |