题目内容

【题目】如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连结AE、EF、AF,则AEF的周长为( )

A. 2cm B. 4cm C. 3cm D. 3cm

【答案】C

【解析】

首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等腰三角形三线合一的定理又可推出△AEF是等边三角形.根据勾股定理可求出AE的长继而求出周长.

解:∵四边形ABCD是菱形,

∴AB=AD=BC=CD,∠B=∠D,

∵E、F分别是BC、CD的中点,

∴BE=DF,

在△ABE和△ADF中,

∴△ABE≌△ADF(SAS),

∴AE=AF,∠BAE=∠DAF.

连接AC,

∵∠B=∠D=60°,

∴△ABC与△ACD是等边三角形,

∴AE⊥BC,AF⊥CD(等腰三角形底边上的中线与底边上的高线重合),

∴∠BAE=∠DAF=30°,

∴∠EAF=60°,

∴△AEF是等边三角形.

AE=cm,

周长是3cm,

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网