题目内容

如图所示,将宽为4厘米的纸条折叠,折痕为AB,如果∠ACB=30°,折叠后重叠部分的面积为_____平方厘米.


  1. A.
    16
  2. B.
    14
  3. C.
    12
  4. D.
    4
A
分析:根据翻折不变性,得到∠α=∠CAB,从而求出∠ABC=∠BAC,再得出△ACB为等腰三角形,求出AD和CB的长,进而求出△ABC的面积.
解答:解:延长GA到F,根据翻折不变性,∠α=∠CAB,
∵AG∥BC,
∴∠GAC=∠ACB=30°,
∴∠α=∠CAB==75°,
∴∠ABC=180°-30°-75°=75°,
∴AC=BC.
作AD⊥BC,垂足为D,
∵纸条的宽=4cm,
∴AD=4cm,
在Rt△ACD中,∠ACD=30°,
∴AC=2AD=2×4=8cm,
∴AC=BC=8cm,
∴△ABC的面积为×4×8=16cm.
故选A.
点评:此题考查了翻折不变性和平行线的性质和等腰三角形的性质及含30°的角的性质,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网